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Human thought and language have extraordinary expressive power because
meaningful parts can be assembled into more complex semantic structures.
This partly underlies our ability to compose meanings into endlessly novel
configurations, and sets us apart from other species and current computing
devices. Crucially, human behaviour, including language use and linguistic
data, indicates that composing parts into complex structures does not threat-
en the existence of constituent parts as independent units in the system:
parts and wholes exist simultaneously yet independently from one another
in the mind and brain. This independence is evident in human behaviour,
but it seems at odds with what is known about the brain’s exquisite sensitivity
to statistical patterns: everyday language use is productive and expressive
precisely because it can go beyond statistical regularities. Formal theories
in philosophy and linguistics explain this fact by assuming that language
and thought are compositional: systems of representations that separate a
variable (or role) from its values ( fillers), such that the meaning of a complex
expression is a function of the values assigned to the variables. The debate
on whether and how compositional systems could be implemented in
minds, brains andmachines remains vigorous. However, it has not yet resulted
inmechanisticmodels of semantic composition: how, then, are the constituents
of thoughts and sentences put and held together? We review and discuss
current efforts at understanding this problem, and we chart possible routes
for future research.

This article is part of the theme issue ‘Towards mechanistic models of
meaning composition’.
1. Meaning composition
Natural language and other symbolic systems, such as logic andmathematics, are
combinatorial and compositional. A system where simpler symbols can be put
together intomore complex symbols in systematic ways is combinatorial: in natu-
ral language, morphemes combine into words, and words into phrases and
sentences. A system where combining symbols also results in combining their
meanings, again in systematic ways, is compositional: given a phrase or sentence,
it is very often possible to assign to it a meaning that is a function of themeanings
of the parts (e.g. the constituent words) and of the structure of the whole
expression [1,2]. Meaning composition is remarkable among human mental
capacities and behaviours, because it does not appear to be adequately accounted
for by statistical relationships or by associative processing alone [3–6]. This fact
stands in striking contrast with the behaviour of other perception–action and
cognitive systems which can be well predicted by traditional or contemporary
statistical or associative models. A further vexing conundrum lies in explaining
how systems in the brain realize meaning composition within the bounds of
neurophysiological computation, given that the human brain is a computational
device whose primary remit is to learn from and capitalize upon the statistical
structure of its environment.
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Figure 1. Meaning composition as function application in formal semantics.
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Compositionality is an issue of much discussion in linguis-
tics and philosophy (e.g. [7–10]): it is a matter of debate to
what extent languages, as opposed to semantic theories, are
compositional. But whether compositionality holds strongly
or weakly for given formal or natural languages, there is no
question that the meanings of complex expressions may be
derived in systematic ways from the meanings of the parts.
Meanings can be composed, and composition must ultimately
boil down to an easily computable or tractable mathematical
function [10–12].

The standard approach in formal semantics is to model
meaning composition as function application [13,14], as illus-
trated in figure 1 for the sentence ‘Ann laughed’. The proper
name ‘Ann’ is represented by a constant (a) and the predicate
‘laughed’ by a lambda term, i.e. a function that may be applied
to arguments of the appropriate type (left panel). How is the
meaning of ‘Ann laughed’ composed? The function ‘laughed’
is applied to the argument ‘Ann’ (middle panel, top), and
in the resulting expression (right panel, top) the bound variable
(x), in the body of the lambda term, is replaced with the
argument expression (a). The idea here is that meaning compo-
sition always consists in the ‘saturation of an unsaturated
meaning component’, an idea also known as ‘Frege’s conjec-
ture’ [15, p. 3]. Function application in the lambda calculus
gives a precise account of this ‘saturation’ process. This
approach has been hugely influential in linguistics, philosophy,
logic and computer science. It has also been strikingly success-
ful in showing how in principle a seemingly complex aspect of
human linguistic competence can be captured by a single uni-
versal operation in a system of formal logic. To the extent that
expressions in natural language can be modelled as predicates
and arguments, a variable in a lambda term can be replaced by
any argument of the right type. And indeed human language is
productive: we could say of anyone that they laughed, because
our semantic representation of laughing is independent of the
individuals of whom laughing is predicated.

Yet, the power and expressivity of the traditional formal
analysis of meaning composition come at a high cost: rampant
idealization. It is not clear just how semantic composition is in the
standard lambda calculus model, for two main reasons. First,
recursive function application produces formulae in predicate
logic (or some high-order intensional language), which
should be interpreted in a given domain or reference structure:
is it function application as such or interpretation that yields
meaning? This question disappears only in a theory in which
composition and interpretation closely mirror each other, i.e.
where a strong version of compositionality holds. Second, it
is not clear how lambda terms specify themeanings of constitu-
ent expressions. Consider the meaning of ‘laughed’, according
to figure 1. What the lambda term does here is merely lift the
relevant expression from the object language to the meta-
language. A lexical meaning is just a placeholder for a typed
entity [16,17], and meaning composition therefore reduces to
logico-syntactic composition of placeholders for typed entities.
Recent trends in linguistics, psychology, neuroscience and
computer science suggest that different formalisms may be
used to model lexical meaning, with important consequences
for theories of semantic composition. In all of these formalisms,
lexicalmeanings are richer data structures than lambda terms in
formal semantics. The idea of breaking down lexical meanings
into ‘atoms’, or in any case simpler constituents, goes back to
decompositional approaches in lexical semantics [18,19],
variously elaborated and refined in subsequent work on con-
ceptual semantics [20], the generative lexicon [21] and
beyond. This idea has gained much traction in recent years
with the development of vector-based analyses of meaning in
distributional semantics and related approaches [22–24] and
with renewed interest in artificial neural networks that can
be trained to represent lexical meanings as vectors. In spite
of deep differences between these approaches, they share a
common implication: if lexical meanings are rich, internally
elaborated data structures (conceptual structures, qualia or
event or argument structures, distributional vectors, etc.),
meaning compositionmay be difficult or impossible to describe
in terms of function application or the ‘saturation of an unsatu-
rated meaning component’. This raises several fundamental
questions about the nature and scope of composition, i.e.
whether it is a simple or a complex function, one or many
operations, autonomous or fully reliant on syntax, etc.

From Frege to deep learning, the history of research on
meaning composition reveals a succession of different theo-
retical approaches, using various formal technologies, from
mathematical logic to linear algebra and statistics. Most of
these formalismshave strived tomeet twogeneral requirements:

(1) that lexical meanings, regardless of how they are formal-
ized, are rich semantic representations that can account
for all the complexities and nuances of human lexical
competence.

(2) that meaning composition, regardless of how it is
formalized, upholds the independence of predicates and
arguments—variables and values, roles and fillers, etc.—
as reflected in human linguistic competence.

Different research programmes in the cognitive sciences
have emphasized these requirements differently, and have
tended touse eitherof themasacriterionof explanatorysuccess.
In generative grammar and formal semantics, but not in other
areas of linguistics, (2) has been given priority over (1). In com-
puter science and artificial intelligence (AI) research, but not in
psychology or neuroscience, (1) has taken precedence over (2).
Yet, a complete, empirically adequate theory of meaning must
explain both aspects of human semantic competence [5,25].
This goal is finally visible on the horizon of cognitive science.

This theme issue addresses meaning composition against
the background of requirements (1) and (2), and from the van-
tage point of recent developments in model-based cognitive
science. Given the extraordinary range of formalisms that
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have been proposed formodelling syntactic and semantic com-
position in languages, a new need arises for empirically and
computationally grounded research on the algorithmic and
neural bases of composition: current (known) formalisms can
guide inquiry into (unknown) mechanisms, and novel results
on the algorithmic and neural implementation of the relevant
operations can help select among alternative formal theories
in logic, syntax and semantics. The long-term goal is an inte-
grative framework, in which theories of meaning
composition are connected seamlessly across levels of analysis
[26]. The 15 contributions presented in this theme issue are
intended to make headway towards this ambitious goal, and
to do so in a way that is consistent with what is known about
neural computation in the human brain.
il.Trans.R.Soc.B
375:20190298
2. Mechanistic models
Recent progress in the cognitive and brain sciences suggests
that mechanisticmodels of syntactic and semantic composition
are not only possible (i.e. that formal and computational tools
exist that allow us to articulate and test such models), but also
necessary for further advancement. First, new data analytic
techniques have been used in human neuroscience, such as
machine learning approaches to decoding the representational
structure and contents of brain states.We are nowable to probe
neural compositionality, that is, whether the cortical represen-
tations of complex symbols are encoded as functions of the
representations of their constituents [27]. Mechanistic models
are now needed to guide this endeavour by specifying
what functions (additive, multiplicative, etc.) are required
by composition. Second, in recent years, progress has been
made in characterizing composition formally and in mapping
it in brain space and time bymeans of functional magnetic res-
onance imaging (fMRI), magnetoencephalography (MEG) or
electroencephalography (EEG). However, algorithmic and
neurophysiologically grounded models are now necessary in
order to begin to link formalism and experimental data.

Mechanistic models are also a requirement for furthering our
understandingof complex systems atmesoscopic scales of organ-
ization, such as the brain or the systems that constitute it. Some of
theearliest attemptsatunderstandingepistemological constraints
involved in the study of perception and cognition may be found
in Vedic philosophical texts from the Indian subcontinent.
The Chandogya Upanishad [28] and Adi Shankaracharya’s
commentary on it use the metaphor of partial, sensory-deprived
exploration of an elephant to highlight the problem:
perceiving the elephant through touching its different parts, [we]
come to have diverse notions regarding it, each one regarding
[the elephant] to be like the part that they had touched; and as
none of [us] had touched the whole elephant, none had any
idea of the elephant as a whole entity [28; §18,29].
This example highlights the inherentmethodological challenges
of studying a complex systemwithout the constraints of theory
and mechanism to guide us: observation may be interpreted
only through the lens of the often implicit and unexamined
biases of the observer—an issue long at stake in philosophy of
science [30]. Newell revisited this problem in his famous 1973
paper, titled ‘You can’t play 20 questions with nature and win’
[31]. He argued that despite, or even because of, rigorous
study in putatively disparate fields of psychology or cognitive
science, whenwe study the capacities of the humanmindwith-
out the infrastructure of formal theory and mechanism, and
specifically without the global purview they provide, we are
functionally reduced to groping an elephant: wemay be getting
data from some partial aspects of the phenomenon, without
being able to connect those data into a coherent picture, or to for-
mulate an account of the processes that generate those data. This
thematic issue espouses the thesis that the purpose of amechan-
ical model is to accomplish those feats, i.e. to connect data and to
explain how data are generated by the system under scrutiny.

Current formal theories in AI, psychology and neuro-
science continue to face dire problems of explanatory
adequacy and power, because they are focused on providing
either models of data (e.g. statistical models) or models of tasks
obtained via approximation of human or machine behaviour,
and not models of the mechanisms that generate those data or of
system behaviours that have not been (or cannot be) observed
in restricted data-collection settings, e.g. a laboratory. This
focus, or lack of focus, is exacerbated by the fact that current
models are not instantiated within a developing theory of
human capacities, when in our view, they should be by necessity.
Of course contemporary models have made much progress in
terms of the tasks they can perform, predict or statistically
approximate: this is true in AI, as well as in psychology and
neuroscience. But we should emphasize that the question
remains as to what, if anything, these models explain, and
how they achieve their explanatory force, if any, without mech-
anism. (Deep) neural networks are a glaring example: as the
complexity of the task to be accomplished (or problem to
be solved) increases, so do the network’s structure, size and
training parameters; but then it also becomes harder to inter-
pret the network’s internal states and go beyond knowledge
of the algorithm or rule used to update weights (e.g. back-
propagation). This is an instance of a well-known paradox:
why pursue modelling, if the model is more complex than
the target system? What is the gain of a model that might
perform well, but prevents insight into its own workings?
And finally, what is a model’s value for inquiry, if there is not
even the lightest tether to constrain it to solve the problem in
the way the mind and brain do?

In order to be explanatory, models require clearly set
explananda [30] and must make reasonable simplifications.
Models should aim to represent observable and partly unobser-
vable events in the brain, and should go beyond predicting
or fitting data, capturing the processes that may generate
relevant data [32–34]. Bechtel & Abrahamsen [35] define a
mechanism as a structure performing some function by
virtue of the structure’s components and their organization
[36]. The mechanisms underlying meaning composition, and
human cognition more generally, are both spatially and tem-
porally organized: the mechanism’s elements have specific
spatial properties (i.e. localization in brain or cell-assembly
state space, distinctive connectivity, etc.) and temporal proper-
ties (i.e. the order, rate, duration of activities, etc.; [37]). The
search for the spatio-temporal correlates of meaning compo-
sition in the brain, or ‘mapping’ composition in brain space
and time, is a necessary step towards mechanistic models.
Further, Kaplan [32] introduces the idea of ‘explanatory force’
of a model, and he links it to the causal structure of the mechan-
ism: ‘A model carries explanatory force to the extent that it
reveals aspects of the causal structure of a mechanism, and
lacks explanatory force to the extent that it fails to describe
this structure’ [32, pp. 347–348]. In his analysis, if relations
between variables in a model account for how certain phenom-
ena arise, and if at least somemodel components correspond to
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the ‘real-world’ mechanism at work, then the model is said to
have ‘explanatory force’. One diagnostic for this is determining
whether through a model one can control or manipulate a
phenomenon, not merely predict it. Successful prediction
does not entail that the model achieves its results by reprodu-
cing the actual mechanism’s causal structure. Similarly, the
model’s ability to successfully predict a phenomenon does
not make the model explanatory [32]. Capturing, via a
model, the causal structure of the mechanism and its causal
roles in producing the phenomena of interest—i.e. developing
an account of why the variables have the relations that they do,
and how they generate the observed data—is what endows a
model with explanatory force.

We see the challenge for current theories of meaning com-
position as twofold. On the one hand, the theorist must extract
from a broad base of experimental data (M/EEG, fMRI, etc.)
information on the spatio-temporal organization of the poss-
ible underlying mechanisms. This endeavour is a stepping
stone to a full causal analysis of the mechanism at work:
here, the aim is to develop an aetiological explanation ofmeaning
composition in neural terms, fleshing out the causal history of
interactions between the relevant brain networks, while also
showing that that history achieves the formal requirements
espoused by linguistic theory and data. This requires the mod-
eller to go beyond the kind of descriptive, phenomenological and
constitutive explanations currently on the market, that is, state-
ments to the effect that such-and-such brain networks or
neurophysiological events constitute the relevant mechanisms,
and therefore may ‘explain’ composition (for a discussion, see
[38,39]). On the other hand, the task is to develop implementa-
tional models of specific algorithms and computations, if not
necessarily of the actual formalisms used in traditional logical
semantics or in contemporary computational linguistics. In
other words, computational explicitness should not be renounced
for causal detail. This is a challenge for all multilevel, integrative
efforts in the cognitive sciences (for a discussion of compu-
tational mechanisms, see [40,41]; for a key discussion of
tractability, see [42]).

The aim of this theme issue is to assess current algorith-
mic- and neural-level models of composition in brains and
machines: are these models mechanistic in the relevant
sense? If not, what are the missing ingredients? And do
these accounts have sufficient explanatory force to address
the human capacity for productive semantic composition,
meeting requirements (1) and (2) (§1)? Finally, are these
models both causally and computationally explicit?
3. Questions and themes
This theme issue comprises 15 contributions from leading and
emerging theorists, modellers and experimentalists in the
fields of linguistics, cognitive psychology and neuroscience,
AI and computer science. These papers can be clustered
together in four groups, each addressing a specific set of ques-
tions or themes pertaining to meaning composition in brains
and machines.

The first theme is the neurobiology of meaning composition:
more specifically, the cortical networks supporting composition,
or related cognitive processes, in language and beyond. The
focus here is on mapping composition-related functions
to specific brain regions or networks using neuroimaging
methods, such as MEG and fMRI. However, the long-term aim
is to use these data types as a springboard for developing explicit
and testable models of composition, where information on
neural correlates is used to generate hypotheses about theunder-
lying neurophysiological mechanisms. Jefferies et al. [43]
investigate the neural bases of retrieving knowledge about
objects and events, a process that precedes and feeds into
composition proper. Meaning composition is likely to occur
differently, in mechanistic terms, depending on whether the
material to be composed is retrieved in a context- or task-
sensitive versus -insensitive way. In particular, context or task
sensitivity requires control processes, and semantic combinatorics
may indeed depend on the extent to which such processes are
engaged in a particular context or task, and on how they interact
with stored knowledge. Jefferies et al. [43] propose that (rela-
tively) uncontrolled retrieval of coherent semantic knowledge
engages anterior regions of the temporal lobe, while controlled
processes would additionally recruit posterior temporal and
inferior frontal cortices. Pylkkänen [44] discusses MEG exper-
iments on the role of the anterior temporal lobe (ATL) in
semantic processing. She argues that left ATL responses are
sensitive to subtle conceptual semantic relations between
words, in ways that are not predicted by the standard account
ofcomposition in formal semantics. Pylkkänen’s [44]perspective
raises the issuewhether neural correlates of syntactic and logico-
semantic composition—beyond conceptual combination—
may/will be identified, and if not, what that means for the role
of syntax and logic in the architecture of language. Hagoort
[45] presents a model of dynamic interaction between temporo-
parietal and inferior frontal cortex. He emphasizes the fact that
language interpretation typically happens in rich conversational
settings, which provide multi-modal information cues for the
construction of models that go beyond a syntax-driven combi-
nation of lexical meanings. A neurobiology of linguistic
meaning should address, also through mechanistic models,
this non-compositional process of meaning construction. Calmus
et al. [46] develop a neurocognitive account of combinatorial
binding that aims to explain how (hierarchical) dependency
relations are recovered from serial order in (meaningful)
sequences.Theiraccount focusesoninteractionsbetween inferior
frontal and temporal cortical structures, striving to capture
experimental data from structured sequence learning tasks.

The second theme is computational models of composition.
Five contributions are included in this set, representing a
broad spectrum of approaches to the algorithmic and neural
implementation of semantics. Vankov & Bowers [47] show that
neural networks with a specific architecture that allows binding
of fillers to roles, given a particular training routine that presses
the system to learn to encode semantic relations flexibly, can
achieve combinatorial generalization. Baroni [48] considers the
performanceof currentdeepneural networks on tasks involving
generalization. He shows that, while these systems may be
capable of structure-dependent generalizations, also from lin-
guistic data, they do not display significant systematic
compositionality. Baroni [48] concludes that further work is
needed to gain novel insights on the mechanisms that deep net-
works could be employing in these tasks. Also, he recommends
experimenting with alternative cognitive architectures that can
directly support compositionality. Martin & Doumas [49] pre-
sent one such possible model, which takes seriously the
requirement of independence of predicates and arguments (or
variables and values) and the need for making explicit the
neurophysiological mechanisms underlying composition. They
show that models that use tensor products for binding violate
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the independence condition, while human behaviour does not,
and propose an alternative binding mechanism, based on oscil-
latory activity driven by inhibitory signals in a settling neural
network, that fully preserves independence of predicates and
arguments. Gwilliams [50] presents a formal and cognitive
model of morphological composition, or how lexical and func-
tional morphemes are composed into known and new words.
The model includes a rule-based composition step, where mor-
pheme meanings are combined into word meanings, followed
by an update step that uses composition outputs at the sentence
level to adjust properties of individualmorphemes. Rabovsky&
McClelland [51] focus on (quasi-)compositional representations
of meaning in the Sentence Gestalt model, reassessing the
model’s empirical coverage vis-à-vis language-related ERP
effects, such as the N400 and P600. They argue that an artificial
neural network model that does not encode sentence meaning
fully compositionally could nonetheless capture interesting
aspects of lexical and sentential semantics—an argument that
resonates with Baroni’s [48] conclusion. The five articles in this
set touch upon limitations of connectionist and deep neural net-
works in capturing compositional meaning, but they also
highlight some of the conditions under which such models
may successfully reproduce aspects of semantic processing.
Most importantly, these papers remind us of the importance
of models with interpretable functional states. Contemporary
artificial neural networks, and more specifically deep learn-
ing networks, only allow the modeller to ‘read off’ states
from output layers: however there is no principled way of
interpreting the network’s internal states.

The third theme is detecting and characterizing neural signa-
tures of semantic composition in known or new signal domains in
experimental data. Nieuwland et al. [52] present a large-scale
(N = 334) multi-lab event-related potential (ERP) experiment
addressing the long-running debate on the N400 as a signature
of lexical semantic activation, driven by word predictability,
versus the N400 as an index of semantic integration, driven by
sentence plausibility. Their ERP results show that the ampli-
tude of the N400 component can be modulated by both
factors, but that the effects of predictability are observed
before those of plausibility. Meaning composition can be facili-
tated by lexical predictability and sentence plausibility, and
those facilitatory effects are reflected in attenuations of the
N400 amplitude. These results support multiple-generator,
multiple-process models of N400 activity, emphasizing the
neurophysiological complexity of the N400 response as well
as the computational continuity between semantic activation
and unification of lexical meaning in context [53,54]. Brennan
&Martin [55] use existing EEG data on naturalistic story listen-
ing to study phase alignment in correspondence to the onsets
of words that close syntactic phrases. They show increased
phase synchronization across several frequency bands depend-
ing on the number of phrases completed by a word. This
finding provides preliminary empirical grounding for some
claims made in other papers in this theme issue, such as
Martin & Doumas [49]. Fyshe [56] presents an elaboration and
application of the Temporal Generalization Method (TGM;
[57]) to the detection of traces of compositional processing in
braindata. TheTGMallowsone toassesswhetherneural activity
patterns, at anygiven time,maycontain informationonprevious
activity states: this is especially useful for studying composition,
which requires the (re)activation andmaintenance of previously
processedmeanings given themeaning of the currentword. The
contributions in this set also showcase the richness of EEG data,
and assert theneed toharnessmultiple signal domains inEEG to
study semantic processes, including lexical semantic activation
and composition.

The fourth theme is the formal and cognitive foundations of
compositionality. Phillips [58] analyses compositionality in
formal and cognitive systems within the mathematical frame-
work of category theory. He argues that sheafs (universal
morphisms) capture, at the most abstract level of description,
the process of constructing a globally coherent representation
from locally structured data. His approach is also interesting
from a philosophical stance, as it reintegrates symbolic (alge-
braic) and sub-symbolic (geometric) models of composition
at a higher level of mathematical abstraction. Moro [59]
analyses from the viewpoint of generative syntax the basic
structures that carry compositional meaning in natural
language, focusing on clause structure. He proposes a con-
figurational derivation of predication as the merging of two
symmetrical phrases. He also discusses the implications of
this view for the analysis of symmetry-breaking phenomena
in syntax (e.g. movement) as well as for neurolinguistics.
Finally, Hendriks [60] proposes that compositionality arises
as a constraint on meaning in tasks that require coordination
between speakers and hearers. She applies insights from
optimality theory, and empirical data on asymmetries bet-
ween comprehension and production in child language use,
to derive the principle of compositionality from perspective
taking: sentences may be guaranteed to have compositional
meaning only when speakers take listeners into account.
Together, these papers present novel perspectives on composi-
tionality, going beyond the standard methodological view
often adopted in formal semantics [8,16].

This theme issue aims at achieving convergence, and ulti-
mately some degree of integration, between different formal
approaches and experimental results on semantic composition,
as illustrated by the four themes presented here.

4. Outlook and conclusion
Understanding meaning composition in brains and machines
requires a shift in current theory and modelling practice
from developing formalisms that can capture properties of
composition in logical terms (e.g. the lambda calculus) to con-
structing models that explain both the human capacity for
composition and behavioural and neural data from cognitive
processing experiments. Much progress has been made in
recent years, as is testified by the contributions in this theme
issue, but much remains to be done toward mechanistic
models of composition thatmeet the desiderata discussed here.

For cognitive neuroscience and the neurobiology of
language, the challenge is to use correlational spatio-temporal
data to identify the cortical networks and neurophysiological
events that are causally responsible for composition. This requires
experimental designs constrained by semantic theory, and
ideally by computationalmodels of semantics, in order to deter-
mine precisely what the observed brain signals may be neural
correlates of. This endeavour is crucial for the neurobiology of
language as a whole. Indeed, discounting sensory and percep-
tual contributions to language processing (decoding auditory
or visual or tactile inputs), much of what happens in the brain
in response to language is semantic and pragmatic processing,
with syntax playing a lesser role than or perhaps a different
role from that envisaged by the view of syntax–semantics
relations in formal semantics and generative syntax [5,61].
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For linguistics and computer science, the challenge is to
develop models that can address compositional and non-com-
positional aspects of meaning, using reasonable definitions of
compositionality that make the principle non-trivial or non-
vacuous formally and empirically; this specific task is likely
to require incisive contributions fromphilosophers of language
andmind. For example, current connectionist or deep learning
models capture experience-based and often non-compositional
aspects of meaning, and can behave compositionally only with
pre-wired architectures or under specific training regimes or
given carefully crafted training data. The issue, then, iswhether
compositionality is a sensible benchmark for connectionist
or deep neural network models. This stands in contrast with
the capabilities of neural–symbolic models, which can support
compositionality via independent role and filler represen-
tations, but may be less sensitive to subtle variations of
meaning across contexts or over time, unless they are also
based in distributed representations. This apparent divide
may be resolved by neurocognitive architectures where com-
positional and non-compositional processing are allocated to
distinct semi-autonomous ‘modules’—respectively, a symbol-
ic, syntax-driven component that composes lexical meanings
productively, complying with the independence of roles and
fillers, and a non-symbolic, context-driven component that
relates meanings predictively, tracking statistical or any other
relevant regularities in the data. However, any hybrid architec-
turemust possess the ability to discover, learn, and deploy new
symbols from unstructured data, else it will face the problem
that Bayesian program induction and most other hard-coded
symbol systems presently face, i.e. the catch-22 requirement
of knowing a priori the solution (e.g. the graph of the represen-
tation system, not merely the training data; see [6,62–64]).
Hybrid architectures of this kind may prove the most success-
ful in the long run if this problem is solved; at present, they
remain unique in their ability to provide an overarching vista
on theoretical, computational and experimental research on
syntactic and semantic composition.
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